University Physics with Modern Physics 14th Edition Young Solutions Manual

Original price was: $35.00.Current price is: $26.50.

University Physics with Modern Physics 14th Edition Young Solutions Manual Digital Instant Download

Category:

This is completed downloadable of University Physics with Modern Physics 14th Edition Young Solutions Manual

Product Details:

  • ISBN-10 ‏ : ‎ 9780133981711
  • ISBN-13 ‏ : ‎ 978-0133981711
  • Author:   Hugh D. Young (Author), Roger A. Freedman (Author)

The Student’s Solutions Manual provides detailed, step-by-step solutions to more than half of the odd-numbered end-of-chapter problems from the text. All solutions follow the same four-step problem-solving framework used in the textbook.

 

Table of Content:

  1. 1. Units, Physical Quantities,and Vectors
  2. 1.1. The Nature of Physics
  3. 1.2. Solving Physics Problems
  4. 1.3. Standards and Units
  5. 1.4. Using and Converting Units
  6. 1.5. Uncertainty and Significant Figures
  7. 1.6. Estimates and Orders of Magnitude
  8. 1.7. Vectors and Vector Addition
  9. 1.8. Components of Vectors
  10. 1.9. Unit Vectors
  11. 1.10. Products of Vectors
  12. Chapter 1 Summary
  13. Problems
  14. 2. Motion Along a Straight Line
  15. 2.1. Displacement, Time, and Average Velocity
  16. 2.2. Instantaneous Velocity
  17. 2.3. Average and Instantaneous Acceleration
  18. 2.4. Motion with Constant Acceleration
  19. 2.5. Freely Falling Bodies
  20. 2.6. Velocity and Position by Integration
  21. Chapter 2 Summary
  22. Problems
  23. 3. Motion in Two or Three Dimensions
  24. 3.1. Position and Velocity Vectors
  25. 3.2. The Acceleration Vector
  26. 3.3. Projectile Motion
  27. 3.4. Motion in a Circle
  28. 3.5. Relative Velocity
  29. Chapter 3 Summary
  30. Problems
  31. 4. Newton’s Laws of Motion
  32. 4.1. Force and Interactions
  33. 4.2. Newton’s First Law
  34. 4.3. Newton’s Second Law
  35. 4.4. Mass and Weight
  36. 4.5. Newton’s Third Law
  37. 4.6. Free-Body Diagrams
  38. Chapter 4 Summary
  39. Problems
  40. 5. Applying Newton’s Laws
  41. 5.1. Using Newton’s First Law: Particles in Equilibrium
  42. 5.2. Using Newton’s Second Law: Dynamics of Particles
  43. 5.3. Friction Forces
  44. 5.4. Dynamics of Circular Motion
  45. 5.5. The Fundamental Forces of Nature
  46. Chapter 5 Summary
  47. Problems
  48. 6. Work and Kinetic Energy
  49. 6.1. Work
  50. 6.2. Kinetic Energy and the Work–Energy Theorem
  51. 6.3. Work and Energy with Varying Forces
  52. 6.4. Power
  53. Chapter 6 Summary
  54. Problems
  55. 7. Potential Energy and Energy Conservation
  56. 7.1. Gravitational Potential Energy
  57. 7.2. Elastic Potential Energy
  58. 7.3. Conservative and Nonconservative Forces
  59. 7.4. Force and Potential Energy
  60. 7.5. Energy Diagrams
  61. Chapter 7 Summary
  62. Problems
  63. 8. Momentum, Impulse, and Collisions
  64. 8.1. Momentum and Impulse
  65. 8.2. Conservation of Momentum
  66. 8.3. Momentum Conservation and Collisions
  67. 8.4. Elastic Collisions
  68. 8.5. Center of Mass
  69. 8.6. Rocket Propulsion
  70. Chapter 8 Summary
  71. Problems
  72. 9. Rotation of Rigid Bodies
  73. 9.1. Angular Velocity and Acceleration
  74. 9.2. Rotation with Constant Angular Acceleration
  75. 9.3. Relating Linear and Angular Kinematics
  76. 9.4. Energy in Rotational Motion
  77. 9.5. Parallel-Axis Theorem
  78. 9.6. Moment-of-Inertia Calculations
  79. Chapter 9 Summary
  80. Problems
  81. 10. Dynamics of Rotational Motion
  82. 10.1. Torque
  83. 10.2. Torque and Angular Acceleration for a Rigid Body
  84. 10.3. Rigid-Body Rotation About a Moving Axis
  85. 10.4. Work and Power in Rotational Motion
  86. 10.5. Angular Momentum
  87. 10.6. Conservation of Angular Momentum
  88. 10.7. Gyroscopes and Precession
  89. Chapter 10 Summary
  90. Problems
  91. 11. Equilibrium and Elasticity
  92. 11.1. Conditions for Equilibrium
  93. 11.2. Center of Gravity
  94. 11.3. Solving Rigid-Body Equilibrium Problems
  95. 11.4. Stress, Strain, and Elastic Moduli
  96. 11.5. Elasticity and Plasticity
  97. Chapter 11 Summary
  98. Problems
  99. 12. Fluid Mechanics
  100. 12.1. Gases, Liquids, and Density
  101. 12.2. Pressure in a Fluid
  102. 12.3. Buoyancy
  103. 12.4. Fluid Flow
  104. 12.5. Bernoulli’s Equation
  105. 12.6. Viscosity and Turbulence
  106. Chapter 12 Summary
  107. Problems
  108. 13. Gravitation
  109. 13.1. Newton’s Law of Gravitation
  110. 13.2. Weight
  111. 13.3. Gravitational Potential Energy
  112. 13.4. The Motion of Satellites
  113. 13.5. Kepler’s Laws and the Motion of Planets
  114. 13.6. Spherical Mass Distributions
  115. 13.7. Apparent Weight and the Earth’s Rotation
  116. 13.8. Black Holes
  117. Chapter 13 Summary
  118. Problems
  119. 14. Periodic Motion
  120. 14.1. Describing Oscillation
  121. 14.2. Simple Harmonic Motion
  122. 14.3. Energy in Simple Harmonic Motion
  123. 14.4. Applications of Simple Harmonic Motion
  124. 14.5. The Simple Pendulum
  125. 14.6. The Physical Pendulum
  126. 14.7. Damped Oscillations
  127. 14.8. Forced Oscillations and Resonance
  128. Chapter 14 Summary
  129. Problems
  130. 15. Mechanical Waves
  131. 15.1. Types of Mechanical Waves
  132. 15.2. Periodic Waves
  133. 15.3. Mathematical Description of a Wave
  134. 15.4. Speed of a Transverse Wave
  135. 15.5. Energy in Wave Motion
  136. 15.6. Wave Interference, Boundary Conditions, and Superposition
  137. 15.7. Standing Waves on a String
  138. 15.8. Normal Modes of a String
  139. Chapter 15 Summary
  140. Problems
  141. 16. Sound and Hearing
  142. 16.1. Sound Waves
  143. 16.2. Speed of Sound Waves
  144. 16.3. Sound Intensity
  145. 16.4. Standing Sound Waves and Normal Modes
  146. 16.5. Resonance and Sound
  147. 16.6. Interference of Waves
  148. 16.7. Beats
  149. 16.8. The Doppler Effect
  150. 16.9. Shock Waves
  151. Chapter 16 Summary
  152. Problems
  153. 17. Temperature and Heat
  154. 17.1. Temperature and Thermal Equilibrium
  155. 17.2. Thermometers and Temperature Scales
  156. 17.3. Gas Thermometers and the Kelvin Scale
  157. 17.4. Thermal Expansion
  158. 17.5. Quantity of Heat
  159. 17.6. Calorimetry and Phase Changes
  160. 17.7. Mechanisms of Heat Transfer
  161. Chapter 17 Summary
  162. Problems
  163. 18. Thermal Properties of Matter
  164. 18.1. Equations of State
  165. 18.2. Molecular Properties of Matter
  166. 18.3. Kinetic-Molecular Model of an Ideal Gas
  167. 18.4. Heat Capacities
  168. 18.5. Molecular Speeds
  169. 18.6. Phases of Matter
  170. Chapter 18 Summary
  171. Problems
  172. 19. The First Law of Thermodynamics
  173. 19.1. Thermodynamic Systems
  174. 19.2. Work Done During Volume Changes
  175. 19.3. Paths between Thermodynamic States
  176. 19.4. Internal Energy and the First Law of Thermodynamics
  177. 19.5. Kinds of Thermodynamic Processes
  178. 19.6. Internal Energy of an Ideal Gas
  179. 19.7. Heat Capacities of an Ideal Gas
  180. 19.8. Adiabatic Processes for an Ideal Gas
  181. Chapter 19 Summary
  182. Problems
  183. 20. The Second Law of Thermodynamics
  184. 20.1. Directions of Thermodynamic Processes
  185. 20.2. Heat Engines
  186. 20.3. Internal-Combustion Engines
  187. 20.4. Refrigerators
  188. 20.5. The Second Law of Thermodynamics
  189. 20.6. The Carnot Cycle
  190. 20.7. Entropy
  191. 20.8. Microscopic Interpretation of Entropy
  192. Chapter 20 Summary
  193. Problems
  194. 21. Electric Charge and Electric Field
  195. 21.1. Electric Charge
  196. 21.2. Conductors, Insulators, and Induced Charges
  197. 21.3. Coulomb’s Law
  198. 21.4. Electric Field and Electric Forces
  199. 21.5. Electric-Field Calculations
  200. 21.6. Electric Field Lines
  201. 21.7. Electric Dipoles
  202. Chapter 21 Summary
  203. Problems
  204. 22. Gauss’s Law
  205. 22.1. Charge and Electric Flux
  206. 22.2. Calculating Electric Flux
  207. 22.3. Gauss’s Law
  208. 22.4. Applications of Gauss’s Law
  209. 22.5. Charges on Conductors
  210. Chapter 22 Summary
  211. Problems
  212. 23. Electric Potential
  213. 23.1. Electric Potential Energy
  214. 23.2. Electric Potential
  215. 23.3. Calculating Electric Potential
  216. 23.4. Equipotential Surfaces
  217. 23.5. Potential Gradient
  218. Chapter 23 Summary
  219. Problems
  220. 24. Capacitance and Dielectrics
  221. 24.1. Capacitors and Capacitance
  222. 24.2. Capacitors in Series and Parallel
  223. 24.3. Energy Storage in Capacitors and Electric-Field Energy
  224. 24.4. Dielectrics
  225. 24.5. Molecular Model of Induced Charge
  226. 24.6. Gauss’s Law in Dielectrics
  227. Chapter 24 Summary
  228. Problems
  229. 25. Current, Resistance, and Electromotive Force
  230. 25.1. Current
  231. 25.2. Resistivity
  232. 25.3. Resistance
  233. 25.4. Electromotive Force and Circuits
  234. 25.5. Energy and Power in Electric Circuits
  235. 25.6. Theory of Metallic Conduction
  236. Chapter 25 Summary
  237. Problems
  238. 26. Direct-Current Circuits
  239. 26.1. Resistors in Series and Parallel
  240. 26.2. Kirchhoff’s Rules
  241. 26.3. Electrical Measuring Instruments
  242. 26.4. R-C Circuits
  243. 26.5. Power Distribution Systems
  244. Chapter 26 Summary
  245. Problems
  246. 27. Magnetic Field and Magnetic Forces
  247. 27.1. Magnetism
  248. 27.2. Magnetic Field
  249. 27.3. Magnetic Field Lines and Magnetic Flux
  250. 27.4. Motion of Charged Particles in a Magnetic Field
  251. 27.5. Applications of Motion of Charged Particles
  252. 27.6. Magnetic Force on a Current-Carrying Conductor
  253. 27.7. Force and Torque on a Current Loop
  254. 27.8. The Direct-Current Motor
  255. 27.9. The Hall Effect
  256. Chapter 27 Summary
  257. Problems
  258. 28. Sources of Magnetic Field
  259. 28.1. Magnetic Field of a Moving Charge
  260. 28.2. Magnetic Field of a Current Element
  261. 28.3. Magnetic Field of a Straight Current-Carrying Conductor
  262. 28.4. Force Between Parallel Conductors
  263. 28.5. Magnetic Field of a Circular Current Loop
  264. 28.6. Ampere’s Law
  265. 28.7. Applications of Ampere’s Law
  266. 28.8. Magnetic Materials
  267. Chapter 28 Summary
  268. Problems
  269. 29. Electromagnetic Induction
  270. 29.1. Induction Experiments
  271. 29.2. Faraday’s Law
  272. 29.3. Lenz’s Law
  273. 29.4. Motional Electromotive Force
  274. 29.5. Induced Electric Fields
  275. 29.6. Eddy Currents
  276. 29.7. Displacement Current and Maxwell ’s Equations
  277. 29.8. Superconductivity
  278. Chapter 29 Summary
  279. Problems
  280. 30. Inductance
  281. 30.1. Mutual Inductance
  282. 30.2. Self-Inductance and Inductors
  283. 30.3. Magnetic-Field Energy
  284. 30.4. The R-L Circuit
  285. 30.5 The L-C Circuit
  286. 30.6. The L-R-C Series Circuit
  287. Chapter 30 Summary
  288. Problems
  289. 31. Alternating Current
  290. 31.1. Phasors and Alternating Currents
  291. 31.2. Resistance and Reactance
  292. 31.3. The L-R-C Series Circuit
  293. 31.4. Power in Alternating-Current Circuits
  294. 31.5. Resonance in Alternating-Current Circuits
  295. 31.6. Transformers
  296. Chapter 31 Summary
  297. Problems
  298. 32. Electromagnetic Waves
  299. 32.1. Maxwell ’s Equations and Electromagnetic Waves
  300. 32.2. Plane Electromagnetic Waves and the Speed of Light
  301. 32.3. Sinusoidal Electromagnetic Waves
  302. 32.4. Energy and Momentum in Electromagnetic Waves
  303. 32.5. Standing Electromagnetic Waves
  304. Chapter 32 Summary
  305. Problems
  306. 33. The Nature and Propagation of Light
  307. 33.1. The Nature of Light
  308. 33.2. Reflection and Refraction
  309. 33.3. Total Internal Reflection
  310. 33.4. Dispersion
  311. 33.5. Polarization
  312. 33.6. Scattering of Light
  313. 33.7. Huygens’s Principle
  314. Chapter 33 Summary
  315. Problems
  316. 34. Geometric Optics
  317. 34.1. Reflection and Refraction at a Plane Surface
  318. 34.2. Reflection at a Spherical Surface
  319. 34.3. Refraction at a Spherical Surface
  320. 34.4. Thin Lenses
  321. 34.5. Cameras
  322. 34.6. The Eye
  323. 34.7. The Magnifier
  324. 34.8. Microscopes and Telescopes
  325. Chapter 34 Summary
  326. Problems
  327. 35. Interference
  328. 35.1. Interference and Coherent Sources
  329. 35.2. Two-Source Interference of Light
  330. 35.3. Intensity in Interference Patterns
  331. 35.4. Interference in Thin Films
  332. 35.5. The Michels on Interferometer
  333. Chapter 35 Summary
  334. Problems
  335. 36. Diffraction
  336. 36.1. Fresnel and Fraunhofer Diffraction
  337. 36.2. Diffraction from a Single Slit
  338. 36.3. Intensity in the Single-Slit Pattern
  339. 36.4. Multiple Slits
  340. 36.5. The Diffraction Grating
  341. 36.6. X-Ray Diffraction
  342. 36.7. Circular Apertures and Resolving Power
  343. 36.8. Holography
  344. Chapter 36 Summary
  345. Problems
  346. 37. Relativity
  347. 37.1. Invariance of Physical Laws
  348. 37.2. Relativity of Simultaneity
  349. 37.3. Relativity of Time Intervals
  350. 37.4. Relativity of Length
  351. 37.5. The Lorentz Transformations
  352. 37.6. The Doppler Effect for Electromagnetic Waves
  353. 37.7. Relativistic Momentum
  354. 37.8. Relativistic Work and Energy
  355. 37.9. Newtonian Mechanics and Relativity
  356. Chapter 37 Summary
  357. Problems
  358. 38. Photons: Light Waves Behaving as Particles
  359. 38.1. Light Absorbed as Photons: The Photoelectric Effect
  360. 38.2. Light Emitted as Photons: X-Ray Production
  361. 38.3. Light Scattered as Photons: Compton Scattering and Pair Production
  362. 38.4. Wave–Particle Duality, Probability, and Uncertainty
  363. Chapter 38 Summary
  364. Problems
  365. 39. Particles Behaving as Waves
  366. 39.1. Electron Waves
  367. 39.2. The Nuclear Atom and Atomic Spectra
  368. 39.3. Energy Levels and the Bohr Model of the Atom
  369. 39.4. The Laser
  370. 39.5. Continuous Spectra
  371. 39.6. The Uncertainty Principle Revisited
  372. Chapter 39 Summary
  373. Problems
  374. 40. Quantum Mechanics I: Wave Functions
  375. 40.1. Wave Functions and the One-Dimensional Schrödinger Equation
  376. 40.2. Particle in a Box
  377. 40.3. Potential Wells
  378. 40.4. Potential Barriers and Tunneling
  379. 40.5. The Harmonic Oscillator
  380. 40.6. Measurement in Quantum Mechanics
  381. Chapter 40 Summary
  382. Problems
  383. 41. Quantum Mechanics II : Atomic Structure
  384. 41.1. The Schrödinger Equationin Three Dimensions
  385. 41.2. Particle in a Three-Dimensional Box
  386. 41.3. The Hydrogen Atom
  387. 41.4. The Zeeman Effect
  388. 41.5. Electron Spin
  389. 41.6. Many-Electron Atoms and the Exclusion Principle
  390. 41.7. X-Ray Spectra
  391. 41.8. Quantum Entanglement
  392. Chapter 41 Summary
  393. Problems
  394. 42. Molecules and Condensed Matter
  395. 42.1. Types of Molecular Bonds
  396. 42.2. Molecular Spectra
  397. 42.3. Structure of Solids
  398. 42.4. Energy Bands
  399. 42.5. Free-Electron Model of Metals
  400. 42.6. Semiconductors
  401. 42.7. Semiconductor Devices
  402. 42.8. Superconductivity
  403. Chapter 42 Summary
  404. Problems
  405. 43. Nuclear Physics
  406. 43.1. Properties of Nuclei
  407. 43.2. Nuclear Binding and Nuclear Structure
  408. 43.3. Nuclear Stability and Radioactivity
  409. 43.4. Activities and Half-Lives
  410. 43.5. Biological Effects of Radiation
  411. 43.6. Nuclear Reactions
  412. 43.7. Nuclear Fission
  413. 43.8. Nuclear Fusion
  414. Chapter 43 Summary
  415. Problems
  416. 44. Particle Physics and Cosmology
  417. 44.1. Fundamental Particles—A History
  418. 44.2. Particle Accelerators and Detectors
  419. 44.3. Particles and Interactions
  420. 44.4. Quarks and Gluons
  421. 44.5. The Standard Model and Beyond
  422. 44.6. The Expanding Universe
  423. 44.7. The Beginning of Time
  424. Chapter 44 Summary
  425. Problems
  426. Appendix A: The International System of Units
  427. Appendix B: Useful Mathematical Relations
  428. Appendix C: The Greek Alphabet
  429. Appendix D: Periodic Table of the Elements
  430. Appendix E: Unit Conversion Factors
  431. Appendix F: Numerical Constants
  432. Answers to Odd-Numbered Problems
  433. Credits
  434. Index
  435. Back Cover