PART 1: VECTOR ANALYSIS |
|
|
|
3 |
(25) |
|
|
3 |
(1) |
|
|
4 |
(1) |
|
|
4 |
(1) |
|
|
5 |
(1) |
|
Vector Addition and Subtraction |
|
|
6 |
(1) |
|
Position and Distance Vectors |
|
|
7 |
(4) |
|
|
11 |
(5) |
|
|
16 |
(12) |
|
|
22 |
(1) |
|
|
23 |
(2) |
|
|
25 |
(3) |
|
Coordinate Systems and Transformation |
|
|
28 |
(25) |
|
|
28 |
(1) |
|
Cartesian Coordinates (x, y, z) |
|
|
29 |
(1) |
|
Circular Cylindrical Coordinates (ρ, &phis;, z) |
|
|
29 |
(3) |
|
Spherical Coordinates (r, &thetas;, z) |
|
|
32 |
(9) |
|
Constant-Coordinate Surfaces |
|
|
41 |
(12) |
|
|
46 |
(1) |
|
|
47 |
(2) |
|
|
49 |
(4) |
|
|
53 |
(50) |
|
|
53 |
(1) |
|
Differential Length, Area, and Volume |
|
|
53 |
(7) |
|
Line, Surface, and Volume Integrals |
|
|
60 |
(3) |
|
|
63 |
(2) |
|
|
65 |
(4) |
|
Divergence of a Vector and Divergence Theorem |
|
|
69 |
(6) |
|
Curl of a Vector and Stokes’s Theorem |
|
|
75 |
(8) |
|
|
83 |
(3) |
|
Classification of Vector Fields |
|
|
86 |
(17) |
|
|
89 |
(1) |
|
|
90 |
(3) |
|
|
93 |
(10) |
PART 2: ELECTROSTATICS |
|
|
|
103 |
(58) |
|
|
103 |
(1) |
|
Coulomb’s Law and Field Intensity |
|
|
104 |
(7) |
|
Electric Fields due to Continuous Charge Distributions |
|
|
111 |
(11) |
|
|
122 |
(2) |
|
Gauss’s Law—Maxwell’s Equation |
|
|
124 |
(2) |
|
Applications of Gauss’s Law |
|
|
126 |
(7) |
|
|
133 |
(6) |
|
Relationship between E and V—Maxwell’s Equation |
|
|
139 |
(3) |
|
An Electric Dipole and Flux Lines |
|
|
142 |
(4) |
|
Energy Density in Electrostatic Fields |
|
|
146 |
(15) |
|
|
150 |
(3) |
|
|
153 |
(2) |
|
|
155 |
(6) |
|
Electric Fields in Material Space |
|
|
161 |
(38) |
|
|
161 |
(1) |
|
|
161 |
(1) |
|
Convection and Conduction Currents |
|
|
162 |
(3) |
|
|
165 |
(6) |
|
Polarization in Dielectrics |
|
|
171 |
(3) |
|
Dielectric Constant and Strength |
|
|
174 |
(1) |
|
Linear, Isotropic, and Homogeneous Dielectrics |
|
|
175 |
(5) |
|
Continuity Equation and Relaxation Time |
|
|
180 |
(2) |
|
|
182 |
(17) |
|
|
191 |
(1) |
|
|
192 |
(2) |
|
|
194 |
(5) |
|
Electrostatic Boundary-Value Problems |
|
|
199 |
(62) |
|
|
199 |
(1) |
|
Poisson’s and Laplace’s Equations |
|
|
199 |
(2) |
|
|
201 |
(1) |
|
General Procedure for Solving Poisson’s or Laplace’s Equation |
|
|
202 |
(21) |
|
Resistance and Capacitance |
|
|
223 |
(17) |
|
|
240 |
(21) |
|
|
246 |
(1) |
|
|
247 |
(2) |
|
|
249 |
(12) |
PART 3: MAGNETOSTATICS |
|
|
|
261 |
(43) |
|
|
261 |
(2) |
|
|
263 |
(10) |
|
Ampere’s Circuit Law—Maxwell’s Equation |
|
|
273 |
(1) |
|
Applications of Ampere’s Law |
|
|
274 |
(7) |
|
Magnetic Flux Density—Maxwell’s Equation |
|
|
281 |
(2) |
|
Maxwell’s Equations for Static EM Fields |
|
|
283 |
(1) |
|
Magnetic Scalar and Vector Potentials |
|
|
284 |
(6) |
|
Derivation of Biot-Savart’s Law and Ampere’s Law |
|
|
290 |
(14) |
|
|
292 |
(1) |
|
|
293 |
(3) |
|
|
296 |
(8) |
|
Magnetic Forces, Materials, and Devices |
|
|
304 |
(65) |
|
|
304 |
(1) |
|
Forces due to Magnetic Fields |
|
|
304 |
(12) |
|
Magnetic Torque and Moment |
|
|
316 |
(2) |
|
|
318 |
(5) |
|
Magnetization in Materials |
|
|
323 |
(4) |
|
Classification of Magnetic Materials |
|
|
327 |
(3) |
|
Magnetic Boundary Conditions |
|
|
330 |
(6) |
|
Inductors and Inductances |
|
|
336 |
(3) |
|
|
339 |
(8) |
|
|
347 |
(2) |
|
Force on Magnetic Materials |
|
|
349 |
(20) |
|
|
354 |
(2) |
|
|
356 |
(2) |
|
|
358 |
(11) |
PART 4: WAVES AND APPLICATIONS |
|
|
|
369 |
(41) |
|
|
369 |
(1) |
|
|
370 |
(2) |
|
Transformer and Motional EMFs |
|
|
372 |
(9) |
|
|
381 |
(3) |
|
Maxwell’s Equations in Final Forms |
|
|
384 |
(3) |
|
|
387 |
(2) |
|
|
389 |
(21) |
|
|
400 |
(1) |
|
|
401 |
(3) |
|
|
404 |
(6) |
|
Electromagnetic Wave Propagation |
|
|
410 |
(63) |
|
|
410 |
(1) |
|
|
411 |
(6) |
|
Wave Propagation in Lossy Dielectrics |
|
|
417 |
(6) |
|
Plane Waves in Lossless Dielectrics |
|
|
423 |
(1) |
|
Plane Waves in Free Space |
|
|
423 |
(2) |
|
Plane Waves in Good Conductors |
|
|
425 |
(10) |
|
Power and the Poynting Vector |
|
|
435 |
(5) |
|
Reflection of a Plane Wave at Normal Incidence |
|
|
440 |
(11) |
|
Reflection of a Plane Wave at Oblique Incidence |
|
|
451 |
(22) |
|
|
462 |
(2) |
|
|
464 |
(2) |
|
|
466 |
(7) |
|
|
473 |
(69) |
|
|
473 |
(1) |
|
Transmission Line Parameters |
|
|
474 |
(3) |
|
Transmission Line Equations |
|
|
477 |
(7) |
|
Input Impedance, SWR, and Power |
|
|
484 |
(8) |
|
|
492 |
(13) |
|
Some Applications of Transmission Lines |
|
|
505 |
(7) |
|
Transients on Transmission Lines |
|
|
512 |
(12) |
|
Microstrip Transmission Lines |
|
|
524 |
(18) |
|
|
528 |
(2) |
|
|
530 |
(3) |
|
|
533 |
(9) |
|
|
542 |
(46) |
|
|
542 |
(1) |
|
|
543 |
(4) |
|
Transverse Magnetic (TM) Modes |
|
|
547 |
(5) |
|
Transverse Electric (TE) Modes |
|
|
552 |
(11) |
|
Wave Propagation in the Guide |
|
|
563 |
(2) |
|
Power Transmission and Attenuation |
|
|
565 |
(4) |
|
Waveguide Current and Mode Excitation |
|
|
569 |
(6) |
|
|
575 |
(13) |
|
|
581 |
(1) |
|
|
582 |
(1) |
|
|
583 |
(5) |
|
|
588 |
(50) |
|
|
588 |
(2) |
|
|
590 |
(4) |
|
|
594 |
(4) |
|
Quarter-Wave Monopole Antenna |
|
|
598 |
(1) |
|
|
599 |
(5) |
|
|
604 |
(8) |
|
|
612 |
(9) |
|
Effective Area and the Friis Equation |
|
|
621 |
(4) |
|
|
625 |
(13) |
|
|
629 |
(1) |
|
|
630 |
(2) |
|
|
632 |
(6) |
|
|
638 |
(22) |
|
|
638 |
(1) |
|
|
638 |
(6) |
|
Electromagnetic Interference and Compatibility |
|
|
644 |
(5) |
|
|
649 |
(11) |
|
|
656 |
(1) |
|
|
656 |
(2) |
|
|
658 |
(2) |
|
|
660 |
(67) |
|
|
660 |
(1) |
|
|
661 |
(8) |
|
The Finite Difference Method |
|
|
669 |
(14) |
|
|
683 |
(11) |
|
The Finite Element Method |
|
|
694 |
(33) |
|
|
713 |
(1) |
|
|
714 |
(2) |
|
|
716 |
(11) |
Appendix A Mathematical Formulas |
|
727 |
(10) |
Appendix B Material Constants |
|
737 |
(3) |
Appendix C Answers to Odd-Numbered Problems |
|
740 |
(23) |
Index |