Biosignal and Medical Image Processing 3rd Semmlow Solution Manual

Original price was: $55.00.Current price is: $29.99.

Biosignal and Medical Image Processing 3rd Semmlow Solution Manual Digital Instant Download

Category:

Biosignal and Medical Image Processing 3rd Semmlow Solution Manual

Product details:

  • ISBN-10 ‏ : ‎ 1466567368
  • ISBN-13 ‏ : ‎ 978-1466567368
  • Author: Semmlow

Written specifically for biomedical engineers, Biosignal and Medical Image Processing, Third Edition provides a complete set of signal and image processing tools, including diagnostic decision-making tools, and classification methods. Thoroughly revised and updated, it supplies important new material on nonlinear methods for describing and classifying signals, including entropy-based methods and scaling methods. A full set of PowerPoint slides covering the material in each chapter and problem solutions is available to instructors for download.

Table contents:

  1. Chapter 1 Introduction
  2. 1.1 Biosignals
  3. 1.2 Biosignal Measurement Systems
  4. 1.3 Transducers
  5. 1.4 Amplifier/Detector
  6. 1.5 Analog Signal Processing and Filters
  7. 1.5.1 Filter Types
  8. 1.5.2 Filter Bandwidth
  9. 1.5.3 Filter Order
  10. 1.5.4 Filter Initial Sharpness
  11. 1.6 ADC Conversion
  12. 1.6.1 Amplitude Slicing
  13. 1.6.2 Time Slicing
  14. 1.6.3 Edge Effects
  15. 1.6.4 Buffering and Real-Time Data Processing
  16. 1.7 Data Banks
  17. 1.8 Summary
  18. Problems
  19. Chapter 2 Biosignal Measurements, Noise, and Analysis
  20. 2.1 Biosignals
  21. 2.1.1 Signal Encoding
  22. 2.1.2 Signal Linearity, Time Invariance, Causality
  23. 2.1.2.1 Superposition
  24. 2.1.3 Signal Basic Measurements
  25. 2.1.4 Decibels
  26. 2.1.5 Signal-to-Noise Ratio
  27. 2.2 Noise
  28. 2.2.1 Noise Sources
  29. 2.2.2 Noise Properties: Distribution Functions
  30. 2.2.3 Electronic Noise
  31. 2.3 Signal Analysis: Data Functions and Transforms
  32. 2.3.1 Comparing Waveforms
  33. 2.3.1.1 Vector Representation
  34. 2.3.1.2 Orthogonality
  35. 2.3.1.3 Basis Functions
  36. 2.3.2 Correlation-Based Analyses
  37. 2.3.2.1 Correlation and Covariance
  38. 2.3.2.2 Matrix of Correlations
  39. 2.3.2.3 Cross-Correlation
  40. 2.3.2.4 Autocorrelation
  41. 2.3.2.5 Autocovariance and Cross-Covariance
  42. 2.3.3 Convolution and the Impulse Response
  43. 2.4 Summary
  44. Problems
  45. Chapter 3 Spectral Analysis: Classical Methods
  46. 3.1 Introduction
  47. 3.2 Fourier Series Analysis
  48. 3.2.1 Periodic Functions
  49. 3.2.1.1 Symmetry
  50. 3.2.2 Complex Representation
  51. 3.2.3 Data Length and Spectral Resolution
  52. 3.2.3.1 Aperiodic Functions
  53. 3.2.4 Window Functions: Data Truncation
  54. 3.3 Power Spectrum
  55. 3.4 Spectral Averaging: Welch’s Method
  56. 3.5 Summary
  57. Problems
  58. Chapter 4 Noise Reduction and Digital Filters
  59. 4.1 Noise Reduction
  60. 4.2 Noise Reduction through Ensemble Averaging
  61. 4.3 Z-Transform
  62. 4.3.1 Digital Transfer Function
  63. 4.4 Finite Impulse Response Filters
  64. 4.4.1 FIR Filter Design and Implementation
  65. 4.4.2 Derivative Filters: Two-Point Central Difference Algorithm
  66. 4.4.2.1 Determining Cutoff Frequency and Skip Factor
  67. 4.4.3 FIR Filter Design Using MATLAB
  68. 4.5 Infinite Impulse Response Filters
  69. 4.5.1 IIR Filter Implementation
  70. 4.5.2 Designing IIR Filters with MATLAB
  71. 4.6 Summary
  72. Problems
  73. Chapter 5 Modern Spectral Analysis: The Search for Narrowband Signals
  74. 5.1 Parametric Methods
  75. 5.1.1 Model Type and Model Order
  76. 5.1.2 Autoregressive Model
  77. 5.1.3 Yule–Walker Equations for the AR Model
  78. 5.2 Nonparametric Analysis: Eigenanalysis Frequency Estimation
  79. 5.2.1 Eigenvalue Decomposition Methods
  80. 5.2.2 Determining Signal Subspace and Noise Subspace Dimensions
  81. 5.2.3 MATLAB Implementation
  82. 5.3 Summary
  83. Problems
  84. Chapter 6 Time–Frequency Analysis
  85. 6.1 Basic Approaches
  86. 6.2 The Short-Term Fourier Transform: The Spectrogram
  87. 6.2.1 MATLAB Implementation of the STFT
  88. 6.3 The Wigner–Ville Distribution: A Special Case of Cohen’s Class
  89. 6.3.1 The Instantaneous Autocorrelation Function
  90. 6.3.2 Time–Frequency Distributions
  91. 6.3.3 The Analytic Signal
  92. 6.4 Cohen’s Class Distributions
  93. 6.4.1 The Choi–Williams Distribution
  94. 6.5 Summary
  95. Problems
  96. Chapter 7 Wavelet Analysis
  97. 7.1 Introduction
  98. 7.2 Continuous Wavelet Transform
  99. 7.2.1 Wavelet Time–Frequency Characteristics
  100. 7.2.2 MATLAB Implementation
  101. 7.3 Discrete Wavelet Transform
  102. 7.3.1 Filter Banks
  103. 7.3.1.1 Relationship between Analytical Expressions and Filter Banks
  104. 7.3.2 MATLAB Implementation
  105. 7.3.2.1 Denoising
  106. 7.3.2.2 Discontinuity Detection
  107. 7.4 Feature Detection: Wavelet Packets
  108. 7.5 Summary
  109. Problems
  110. Chapter 8 Optimal and Adaptive Filters
  111. 8.1 Optimal Signal Processing: Wiener Filters
  112. 8.1.1 MATLAB Implementation
  113. 8.2 Adaptive Signal Processing
  114. 8.2.1 ALE and Adaptive Interference Suppression
  115. 8.2.2 Adaptive Noise Cancellation
  116. 8.2.3 MATLAB Implementation
  117. 8.3 Phase-Sensitive Detection
  118. 8.3.1 AM Modulation
  119. 8.3.2 Phase-Sensitive Detectors
  120. 8.3.3 MATLAB Implementation
  121. 8.4 Summary
  122. Problems
  123. Chapter 9 Multivariate Analyses: Principal Component Analysis and Independent Component Analysis
  124. 9.1 Introduction: Linear Transformations
  125. 9.2 Principal Component Analysis
  126. 9.2.1 Determination of Principal Components Using Singular-Value Decomposition
  127. 9.2.2 Order Selection: The Scree Plot
  128. 9.2.3 MATLAB Implementation
  129. 9.2.3.1 Data Rotation
  130. 9.2.4 PCA in MATLAB
  131. 9.3 Independent Component Analysis
  132. 9.3.1 MATLAB Implementation
  133. 9.4 Summary
  134. Problems
  135. Chapter 10 Chaos and Nonlinear Dynamics
  136. 10.1 Nonlinear Systems
  137. 10.1.1 Chaotic Systems
  138. 10.1.2 Types of Systems
  139. 10.1.3 Types of Noise
  140. 10.1.4 Chaotic Systems and Signals
  141. 10.2 Phase Space
  142. 10.2.1 Iterated Maps
  143. 10.2.2 The Hénon Map
  144. 10.2.3 Delay Space Embedding
  145. 10.2.4 The Lorenz Attractor
  146. 10.3 Estimating the Embedding Parameters
  147. 10.3.1 Estimation of the Embedding Dimension Using Nearest Neighbors
  148. 10.3.2 Embedding Dimension: SVD
  149. 10.4 Quantifying Trajectories in Phase Space: The Lyapunov Exponent
  150. 10.4.1 Goodness of Fit of a Linear Curve
  151. 10.4.2 Methods of Determining the Lyapunov Exponent
  152. 10.4.3 Estimating the Lyapunov Exponent Using Multiple Trajectories
  153. 10.5 Nonlinear Analysis: The Correlation Dimension
  154. 10.5.1 Fractal Objects
  155. 10.5.2 The Correlation Sum
  156. 10.6 Tests for Nonlinearity: Surrogate Data Analysis
  157. 10.7 Summary Exercises
  158. Chapter 11 Nonlinearity Detection: Information-Based Methods
  159. 11.1 Information and Regularity
  160. 11.1.1 Shannon’s Entropy Formulation
  161. 11.2 Mutual Information Function
  162. 11.2.1 Automutual Information Function
  163. 11.3 Spectral Entropy
  164. 11.4 Phase-Space-Based Entropy Methods
  165. 11.4.1 Approximate Entropy
  166. 11.4.2 Sample Entropy
  167. 11.4.3 Coarse Graining
  168. 11.5 Detrended Fluctuation Analysis
  169. 11.6 Summary
  170. Problems
  171. Chapter 12 Fundamentals of Image Processing: The MATLAB Image Processing Toolbox
  172. 12.1 Image-Processing Basics: MATLAB Image Formats
  173. 12.1.1 General Image Formats: Image Array Indexing
  174. 12.1.2 Image Classes: Intensity Coding Schemes
  175. 12.1.3 Data Formats
  176. 12.1.4 Data Conversions
  177. 12.2 Image Display
  178. 12.3 Image Storage and Retrieval
  179. 12.4 Basic Arithmetic Operations
  180. 12.5 Block-Processing Operations
  181. 12.5.1 Sliding Neighborhood Operations
  182. 12.5.2 Distinct Block Operations
  183. 12.6 Summary
  184. Problems
  185. Chapter 13 Image Processing: Filters, Transformations, and Registration
  186. 13.1 Two-Dimensional Fourier Transform
  187. 13.1.1 MATLAB Implementation
  188. 13.2 Linear Filtering
  189. 13.2.1 MATLAB Implementation
  190. 13.2.2 Filter Design
  191. 13.3 Spatial Transformations
  192. 13.3.1 Affine Transformations
  193. 13.3.1.1 General Affine Transformations
  194. 13.3.2 Projective Transformations
  195. 13.4 Image Registration
  196. 13.4.1 Unaided Image Registration
  197. 13.4.2 Interactive Image Registration
  198. 13.5 Summary
  199. Problems
  200. Chapter 14 Image Segmentation
  201. 14.1 Introduction
  202. 14.2 Pixel-Based Methods
  203. 14.2.1 Threshold Level Adjustment
  204. 14.2.2 MATLAB Implementation
  205. 14.3 Continuity-Based Methods
  206. 14.3.1 MATLAB Implementation
  207. 14.4 Multithresholding
  208. 14.5 Morphological Operations
  209. 14.5.1 MATLAB Implementation
  210. 14.6 Edge-Based Segmentation
  211. 14.6.1 Hough Transform
  212. 14.6.2 MATLAB Implementation
  213. 14.7 Summary
  214. Problems
  215. Chapter 15 Image Acquisition and Reconstruction
  216. 15.1 Imaging Modalities
  217. 15.2 CT, PET, and SPECT
  218. 15.2.1 Radon Transform
  219. 15.2.2 Filtered Back Projection
  220. 15.2.3 Fan Beam Geometry
  221. 15.2.4 MATLAB Implementation of the Forward and Inverse Radon Transforms: Parallel Beam Geometry
  222. 15.2.5 MATLAB Implementation of the Forward and Inverse Radon Transforms: Fan Beam Geometry
  223. 15.3 Magnetic Resonance Imaging
  224. 15.3.1 Magnetic Gradients
  225. 15.3.2 Data Acquisition: Pulse Sequences
  226. 15.4 Functional MRI
  227. 15.4.1 fMRI Implementation in MATLAB
  228. 15.4.2 Principal Component and ICA
  229. 15.5 Summary
  230. Problems
  231. Chapter 16 Classification I: Linear Discriminant Analysis and Support Vector Machines
  232. 16.1 Introduction
  233. 16.1.1 Classifier Design: Machine Capacity
  234. 16.2 Linear Discriminators
  235. 16.3 Evaluating Classifier Performance
  236. 16.4 Higher Dimensions: Kernel Machines
  237. 16.5 Support Vector Machines
  238. 16.5.1 MATLAB Implementation
  239. 16.6 Machine Capacity: Overfitting or “Less Is More”
  240. 16.7 Extending the Number of Variables and Classes
  241. 16.8 Cluster Analysis
  242. 16.8.1 K-Nearest Neighbor Classifier
  243. 16.8.2 k-Means Clustering Classifier
  244. 16.9 Summary
  245. Problems
  246. Chapter 17 Classification II: Adaptive Neural Nets
  247. 17.1 Introduction
  248. 17.1.1 Neuron Models
  249. 17.2 Training the McCullough–Pitts Neuron
  250. 17.3 The Gradient Decent Method or Delta Rule
  251. 17.4 Two-Layer Nets: Back Projection
  252. 17.5 Three-Layer Nets
  253. 17.6 Training Strategies
  254. 17.6.1 Stopping Criteria: Cross-Validation
  255. 17.6.2 Momentum
  256. 17.7 Multiple Classifications
  257. 17.8 Multiple Input Variables
  258. 17.9 Summary
  259. Problems
  260. Appendix A: Numerical Integration in MATLAB
  261. Appendix B: Useful MATLAB Functions
  262. Bibliography
  263. Index

People also search:

biosignal and medical image processing 3rd edition pdf

medical image processing companies

what is the most common form of medical imaging

biosignal and medical image processing pdf

image processing in biomedical engineering