Solution Manual for Physics, 11th Edition, John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler,

Original price was: $35.00.Current price is: $26.50.

Solution Manual for Physics, 11th Edition, John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler, Digital Instant Download

Category:

Instant download Solution Manual for Physics, 11th Edition, John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler pdf docx epub after payment.

Product details:

  • ISBN-10 ‏ : ‎ 1119394112
  • ISBN-13 ‏ : ‎ 978-1119394112
  • Author: John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler

Physics continues to build on rich multimedia enhancements that encourage student engagement. ORION, the adaptive study guide, diagnoses student’s strengths and weaknesses, leading them to the specific content and media needed to help them effectively learn. All ORION practice problems have hints and feedback. The course includes 259 short lecture videos, one for each course section, that explain the basic concepts and learning objectives. In addition, 150 Chalkboard problem-solving videos and guided online tutorials along with vector drawing questions enrich WileyPLUS. These features are designed to encourage students to remain within the WileyPLUS environment, as opposed to pursuing the “pay-for-solutions” websites and searching uncurated web content that short circuits and can confuse their learning process.

Table of contents:

1 Introduction and Mathematical Concepts 1

1.1 The Nature of Physics 1

1.2 Units 2

1.3 The Role of Units in Problem Solving 3

1.4 Trigonometry 6

1.5 Scalars and Vectors 8

1.6 Vector Addition and Subtraction 10

1.7 The Components of a Vector 12

1.8 Addition of Vectors by Means of Components 15

Concept Summary 19

Focus on Concepts 19

Problems 21

Additional Problems 24

Concepts and Calculations Problems 25

Team Problems 26

2 Kinematics in One Dimension 27

2.1 Displacement 27

2.2 Speed and Velocity 28

2.3 Acceleration 31

2.4 Equations of Kinematics for Constant Acceleration 34

2.5 Applications of the Equations of Kinematics 37

2.6 Freely Falling Bodies 41

2.7 Graphical Analysis of Velocity and Acceleration 45

Concept Summary 47

Focus on Concepts 48

Problems 49

Additional Problems 53

Concepts and Calculations Problems 54

Team Problems 54

3 Kinematics in Two Dimensions 55

3.1 Displacement, Velocity, and Acceleration 55

3.2 Equations of Kinematics in Two Dimensions 56

3.3 Projectile Motion 60

3.4 Relative Velocity 68

Concept Summary 72

Focus on Concepts 73

Problems 74

Additional Problems 77

Concepts and Calculations Problems 78

Team Problems 79

4 Forces and Newton’s Laws of Motion 80

4.1 The Concepts of Force and Mass 80

4.2 Newton’s First Law of Motion 81

4.3 Newton’s Second Law of Motion 83

4.4 The Vector Nature of Newton’s Second Law of Motion 85

4.5 Newton’s Third Law of Motion 86

4.6 Types of Forces: An Overview 88

4.7 The Gravitational Force 88

4.8 The Normal Force 92

4.9 Static and Kinetic Frictional Forces 95

4.10 The Tension Force 101

4.11 Equilibrium Applications of Newton’s Laws of Motion 102

4.12 Nonequilibrium Applications of Newton’s Laws of Motion 106

Concept Summary 111

Focus on Concepts 112

Problems 114

Additional Problems 118

Concepts and Calculations Problems 119

Team Problems 120

5 Dynamics of Uniform Circular Motion 121

5.1 Uniform Circular Motion 121

5.2 Centripetal Acceleration 122

5.3 Centripetal Force 125

5.4 Banked Curves 129

5.5 Satellites in Circular Orbits 130

5.6 Apparent Weightlessness and Artificial Gravity 133

5.7 *Vertical Circular Motion 136

Concept Summary 137

Focus on Concepts 138

Problems 139

Additional Problems 141

Concepts and Calculations Problems 142

Team Problems 143

6 Work and Energy 144

6.1 Work Done by a Constant Force 144

6.2 The Work–Energy Theorem and Kinetic Energy 147

6.3 Gravitational Potential Energy 153

6.4 Conservative Versus Nonconservative Forces 155

6.5 The Conservation of Mechanical Energy 157

6.6 Nonconservative Forces and the Work–Energy Theorem 161

6.7 Power 162

6.8 Other Forms of Energy and the Conservation of Energy 164

6.9 Work Done by a Variable Force 164

Concept Summary 166

Focus on Concepts 167

Problems 168

Additional Problems 172

Concepts and Calculations Problems 173

Team Problems 174

7 Impulse and Momentum 175

7.1 The Impulse–Momentum Theorem 175

7.2 The Principle of Conservation of Linear Momentum 179

7.3 Collisions in One Dimension 184

7.4 Collisions in Two Dimensions 189

7.5 Center of Mass 189

Concept Summary 192

Focus on Concepts 193

Problems 194

Additional Problems 197

Concepts and Calculations Problems 198

Team Problems 199

8 Rotational Kinematics 200

8.1 Rotational Motion and Angular Displacement 200

8.2 Angular Velocity and Angular Acceleration 203

8.3 The Equations of Rotational Kinematics 205

8.4 Angular Variables and Tangential Variables 208

8.5 Centripetal Acceleration and Tangential Acceleration 210

8.6 Rolling Motion 213

8.7 *The Vector Nature of Angular Variables 214

Concept Summary 215

Focus on Concepts 216

Problems 216

Additional Problems 220

Concepts and Calculations Problems 221

Team Problems 222

9 Rotational Dynamics 223

9.1 The Action of Forces and Torques on Rigid Objects 223

9.2 Rigid Objects in Equilibrium 226

9.3 Center of Gravity 231

9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 236

9.5 Rotational Work and Energy 241

9.6 Angular Momentum 244

Concept Summary 246

Focus on Concepts 247

Problems 248

Additional Problems 254

Concepts and Calculations Problems 255

Team Problems 256

10 Simple Harmonic Motion and Elasticity 257

10.1 The Ideal Spring and Simple Harmonic Motion 257

10.2 Simple Harmonic Motion and the Reference Circle 261

10.3 Energy and Simple Harmonic Motion 267

10.4 The Pendulum 270

10.5 Damped Harmonic Motion 273

10.6 Driven Harmonic Motion and Resonance 274

10.7 Elastic Deformation 275

10.8 Stress, Strain, and Hooke’s Law 279

Concept Summary 280

Focus on Concepts 281

Problems 282

Additional Problems 287

Concepts and Calculations Problems 288

Team Problems 288

11 Fluids 289

11.1 Mass Density 289

11.2 Pressure 291

11.3 Pressure and Depth in a Static Fluid 293

11.4 Pressure Gauges 297

11.5 Pascal’s Principle 298

11.6 Archimedes’ Principle 300

11.7 Fluids in Motion 305

11.8 The Equation of Continuity 307

11.9 Bernoulli’s Equation 309

11.10 Applications of Bernoulli’s Equation 311

11.11 *Viscous Flow 314

Concept Summary 317

Focus on Concepts 318

Problems 319

Additional Problems 323

Concepts and Calculations Problems 324

Team Problems 325

12 Temperature and Heat 326

12.1 Common Temperature Scales 326

12.2 The Kelvin Temperature Scale 328

12.3 Thermometers 329

12.4 Linear Thermal Expansion 330

12.5 Volume Thermal Expansion 337

12.6 Heat and Internal Energy 339

12.7 Heat and Temperature Change: Specific Heat Capacity 340

12.8 Heat and Phase Change: Latent Heat 343

12.9 *Equilibrium Between Phases of Matter 347

12.10 *Humidity 350

Concept Summary 352

Focus on Concepts 352

Problems 353

Additional Problems 358

Concepts and Calculations Problems 358

Team Problems 359

13 The Transfer of Heat 360

13.1 Convection 360

13.2 Conduction 363

13.3 Radiation 370

13.4 Applications 373

Concept Summary 375

Focus on Concepts 375

Problems 376

Additional Problems 378

Concepts and Calculations Problems 379

Team Problems 379

14 The Ideal Gas Law and Kinetic Theory 380

14.1 Molecular Mass, the Mole, and Avogadro’s Number 380

14.2 The Ideal Gas Law 383

14.3 Kinetic Theory of Gases 388

14.4 *Diffusion 392

Concept Summary 395

Focus on Concepts 396

Problems 397

Additional Problems 399

Concepts and Calculations Problems 400

Team Problems 400

15 Thermodynamics 401

15.1 Thermodynamic Systems and Their Surroundings 401

15.2 The Zeroth Law of Thermodynamics 402

15.3 The First Law of Thermodynamics 402

15.4 Thermal Processes 404

15.5 Thermal Processes Using an Ideal Gas 408

15.6 Specific Heat Capacities 411

15.7 The Second Law of Thermodynamics 412

15.8 Heat Engines 413

15.9 Carnot’s Principle and the Carnot Engine 414

15.10 Refrigerators, Air Conditioners, and Heat Pumps 417

15.11 Entropy 420

15.12 The Third Law of Thermodynamics 425

Concept Summary 425

Focus on Concepts 426

Problems 427

Additional Problems 431

Concepts and Calculations Problems 432

Team Problems 432

16 Waves and Sound 433

16.1 The Nature of Waves 433

16.2 Periodic Waves 435

16.3 The Speed of a Wave on a String 436

16.4 *The Mathematical Description of a Wave 439

16.5 The Nature of Sound 439

16.6 The Speed of Sound 442

16.7 Sound Intensity 446

16.8 Decibels 448

16.9 The Doppler Effect 450

16.10 Applications of Sound in Medicine 454

16.11 *The Sensitivity of the Human Ear 455

Concept Summary 456

Focus on Concepts 457

Problems 458

Additional Problems 463

Concepts and Calculations Problems 464

Team Problems 464

17 The Principle of Linear Superposition and Interference Phenomena 465

17.1 The Principle of Linear Superposition 465

17.2 Constructive and Destructive Interference of Sound Waves 466

17.3 Diffraction 470

17.4 Beats 473

17.5 Transverse Standing Waves 474

17.6 Longitudinal Standing Waves 478

17.7 *Complex Sound Waves 481

Concept Summary 482

Focus on Concepts 483

Problems 484

Additional Problems 487

Concepts and Calculations Problems 488

Team Problems 488

18 Electric Forces and Electric Fields 489

18.1 The Origin of Electricity 489

18.2 Charged Objects and the Electric Force 490

18.3 Conductors and Insulators 493

18.4 Charging by Contact and by Induction 493

18.5 Coulomb’s Law 495

18.6 The Electric Field 500

18.7 Electric Field Lines 505

18.8 The Electric Field Inside a Conductor: Shielding 508

18.9 Gauss’ Law 510

18.10 *Copiers and Computer Printers 513

Concept Summary 516

Focus on Concepts 516

Problems 517

Additional Problems 521

Concepts and Calculations Problems 521

Team Problems 522

19 Electric Potential Energy and the Electric Potential 523

19.1 Potential Energy 523

19.2 The Electric Potential Difference 524

19.3 The Electric Potential Difference Created by Point Charges 530

19.4 Equipotential Surfaces and Their Relation to the Electric Field 534

19.5 Capacitors and Dielectrics 537

19.6 *Biomedical Applications of Electric Potential Differences 541

Concept Summary 544

Focus on Concepts 544

Problems 546

Additional Problems 548

Concepts and Calculations Problems 549

Team Problems 550

20 Electric Circuits 551

20.1 Electromotive Force and Current 551

20.2 Ohm’s Law 553

20.3 Resistance and Resistivity 554

20.4 Electric Power 557

20.5 Alternating Current 559

20.6 Series Wiring 562

20.7 Parallel Wiring 565

20.8 Circuits Wired Partially in Series and Partially in Parallel 569

20.9 Internal Resistance 570

20.10 Kirchhoff ’s Rules 571

20.11 The Measurement of Current and Voltage 574

20.12 Capacitors in Series and in Parallel 575

20.13 RC Circuits 577

20.14 Safety and the Physiological Effects of Current 579

Concept Summary 580

Focus on Concepts 581

Problems 582

Additional Problems 588

Concepts and Calculations Problems 589

Team Problems 589

People also search:

Physics, 11th Edition

Physics, 11th Edition pdf

Physics

physics acceleration formula

physics and philosophy