Solution Manual for Thermodynamics: An Interactive Approach Subrata Bhattacharjee

Original price was: $35.00.Current price is: $26.50.

Solution Manual for Thermodynamics: An Interactive Approach Subrata Bhattacharjee Digital Instant Download

Category:

Solution Manual for Thermodynamics: An Interactive Approach Subrata Bhattacharjee

Product details:

  • ISBN-10 ‏ : ‎ 0130351172
  • ISBN-13 ‏ : ‎ 978-0130351173
  • Author: Professor Subrata Bhattacharjee

Thermodynamics: An Interactive Approach employs a layered approach that introduces the important concepts of massenergy, and entropy early, and progressively refines them throughout the text. To create a rich learning experience for today’s thermodynamics student, this book melds traditional content with the web-based resources and learning tools of TEST: The Expert System for Thermodynamics an interactive platform that offers smart thermodynamic tables for property evaluation and analysis tools for mass, energy, entropy, and exergy analysis of open and closed systems.

Table contents:

1. Description of a System: States And Properties

1.1 Consequences of Interactions

1.2 States

1.3 Macroscopic vs. Microscopic Thermodynamics

1.4 An Image Analogy

1.5 Properties of State

1.5.1 Property Evaluation by State Daemons

1.5.2 Properties Related to System Size

2. Development of Balance Equations for Mass, Energy, and Entropy: Application to Closed-Steady Systems

2.1 Balance Equations

2.1.1 Mass Balance Equation

2.1.2 Energy Balance Equation

2.1.3 Entropy Balance Equation

2.1.4 Entropy and Reversibility

2.2 Closed-Steady Systems

2.3 Cycles—a Special Case of Closed-Steady Systems

2.3.1 Heat Engine

2.3.2 Refrigerator and Heat Pump

2.3.3 The Carnot Cycle

2.3.4 The Kelvin Temperature Scale

2.4 Closure

 

3. Evaluation of Properties: Material Models

3.1 Thermodynamic Equilibrium and States

3.1.1 Equilibrium and LTE (Local Thermodynamic Equilibrium)

3.1.2 The State Postulate

3.1.3 Differential Thermodynamic Relations

3.2 Material Models

3.2.1 State Daemons and TEST-Codes

3.3 The SL (Solid>Liquid) Model

3.3.1 SL Model Assumptions

3.3.2 Equations of State

3.3.3 Model Summary: SL Model

3.4 The PC (Phase-Change) Model

3.4.1 A New Pair of Properties—Qualities x and y

3.4.2 Numerical Simulation

3.4.3 Property Diagrams

3.4.4 Extending the Diagrams: The Solid Phase

3.4.5 Thermodynamic Property Tables

3.4.6 Evaluation of Phase Composition

3.4.7 Properties of Saturated Mixture

3.4.8 Subcooled or Compressed Liquid

3.4.9 Supercritical Vapor or Liquid

3.4.10 Sublimation States

3.4.11 Model Summary—PC Model

3.5 GAS MODELS

3.5.1 The IG (Ideal Gas) and PG (Perfect Gas) Models

3.5.2 IG and PG Model Assumptions

3.5.3 Equations of State

3.5.4 Model Summary: PG and IG Models

3.5.5 The RG (Real Gas) Model

3.5.6 RG Model Assumptions

3.5.7 Compressibility Charts

3.5.8 Other Equations of State

3.5.9 Model Summary: RG Model

3.6 Mixture Models

3.6.1 Vacuum

3.7 Standard Reference State and Reference Values

3.8 Selection of a Model

3.9 Closure

 

4. Mass, Energy, and Entropy Analysis of Open-Steady Systems

4.1 Governing Equations and Device Efficiencies

4.1.1 TEST and the Open-Steady Daemons

4.1.2 Energetic Efficiency

4.1.3 Internally Reversible System

4.1.4 Isentropic Efficiency

4.2 Comprehensive Analysis

4.2.1 Pipes, Ducts, or Tubes

4.2.2 Nozzles and Diffusers

4.2.3 Turbines

4.2.4 Compressors, Fans, and Pumps

4.2.5 Throttling Valves

4.2.6 Heat Exchangers

4.2.7 TEST and the Multi-Flow Non-Mixing Daemons

4.2.8 Mixing Chambers and Separators

4.2.9 TEST and the Multi-Flow Mixing Daemons

4.3 Closure

 

5. Mass, Energy, and Entropy Analysis of Unsteady Systems

5.1 Unsteady Processes

5.1.1 Closed Processes

5.1.2 TEST and the Closed-Process Daemons

5.1.3 Energetic Efficiency and Reversibility

5.1.4 Uniform Closed Processes

5.1.5 Non-Uniform Systems

5.1.6 TEST and the Non-Uniform Closed-Process Daemons

5.1.7 Open Processes

5.1.8 TEST and Open-Process Daemons

5.2 Transient Analysis

5.2.1 Closed Transient Systems

5.2.2 Isolated Systems

5.2.3 Mechanical Systems

5.2.4 Open Transient Systems

5.3 Differential Processes

5.4 Thermodynamic Cycle as a Closed Process

5.4.1 Origin of Internal Energy

5.4.2 Clausius Inequality and Entropy

5.5 Closure

 

6. Exergy Balance Equation: Application to Steady and Unsteady Systems

6.1 Exergy Balance Equation

6.1.1 Exergy, Reversible Work, and Irreversibility

6.1.2 TEST Daemons for Exergy Analysis

6.2 Closed-Steady Systems

6.2.1 Exergy Analysis of Cycles

6.3 Open-Steady Systems

6.4 Closed Processes

6.5 Open Processes

6.6 Closure

 

7. Reciprocating Closed Power Cycles

7.1 The Closed Carnot Heat Engine

7.1.1 Significance of the Carnot Engine

7.2 IC Engine Terminology

7.3 Air-Standard Cycles

7.3.1 TEST and the Reciprocating Cycle Daemons

7.4 Otto Cycle

7.4.1 Cycle Analysis

7.4.2 Qualitative Performance Predictions

7.4.3 Fuel Consideration

7.5 Diesel Cycle

7.5.1 Cycle Analysis

7.5.2 Fuel Consideration

7.6 Dual Cycle

7.7 Atkinson and Miller Cycles

7.8 Stirling Cycle

7.9 Two-Stroke Cycle

7.10 Fuels

7.11 Closure

 

8. Open Gas Power Cycle

8.1 The Gas Turbine

8.2 The Air-Standard Brayton Cycle

8.2.1 TEST and the Open Gas Power-Cycle Daemons

8.2.2 Fuel Consideration

8.2.3 Qualitative Performance Predictions

8.2.4 Irreversibilities in an Actual Cycle

8.2.5 Exergy Accounting of Brayton Cycle

8.3 Gas Turbine With Regeneration

8.4 Gas Turbine With Reheat

8.5 Gas Turbine With Intercooling and Reheat

8.6 Regenerative Gas Turbine With Reheat and Intercooling

8.7 Gas Turbines For Jet Propulsion

8.7.1 The Momentum Balance Equation

8.7.2 Jet Engine Performance

8.7.3 Air-Standard Cycle for Turbojet Analysis

8.8 Other Forms of Jet Propulsion

8.9 Closure

 

9. Open Vapor Power Cycles

9.1 The Steam Power Plant

9.2 The Rankine Cycle

9.2.1 Carbon Footprint

9.2.2 TEST and the Open Vapor Power Cycle Daemons

9.2.3 Qualitative Performance Predictions

9.2.4 Parametric Study of the Rankine Cycle

9.2.5 Irreversibilities in an Actual Cycle

9.2.6 Exergy Accounting of Rankine Cycle

9.3 Modification of Rankine Cycle

9.3.1 Reheat Rankine Cycle

9.3.2 Regenerative Rankine Cycle

9.4 Cogeneration

9.5 Binary Vapor Cycle

9.6 Combined Cycle

9.7 Closure

 

10. Refrigeration Cycles

10.1 Refrigerators and Heat Pump

10.2 Test and the Refrigeration Cycle Daemons

10.3 Vapor-Refrigeration Cycles

10.3.1 Carnot Refrigeration Cycle

10.3.2 Vapor Compression Cycle

10.3.3 Analysis of an Ideal Vapor-Compression Refrigeration Cycle

10.3.4 Qualitative Performance Predictions

10.3.5 Actual Vapor-Compression Cycle

10.3.6 Components of a Vapor-Compression Plant

10.3.7 Exergy Accounting of Vapor Compression Cycle

10.3.8 Refrigerant Selection

10.3.9 Cascade Refrigeration Systems

10.3.10 Multistage Refrigeration with Flash Chamber

10.4 Absorption Refrigeration Cycle

10.5 Gas Refrigeration Cycles

10.5.1 Reversed Brayton Cycle

10.5.2 Linde-Hampson Cycle

10.6 Heat Pump Systems

10.7 Closure

 

11. Evaluation of Properties: Thermodynamic Relations

11.1 Thermodynamic Relations

11.1.1 The Tds Relations

11.1.2 Partial Differential Relations

11.1.3 The Maxwell Relations

11.1.4 The Clapeyron Equation

11.1.5 The Clapeyron-Clausius Equation

11.2 Evaluation of Properties

11.2.1 Internal Energy

11.2.2 Enthalpy

11.2.3 Entropy

11.2.4 Volume Expansivity and Compressibility

11.2.5 Specific Heats

11.2.6 Joule-Thompson Coefficient

11.3 The Real Gas (RG) Model

11.4 Mixture Models

11.4.1 Mixture Composition

11.4.2 Mixture Daemons

11.4.3 PG and IG Mixture Models

11.4.4 Mass, Energy, and Entropy Equations for IG-Mixtures

11.4.5 Real Gas Mixture Model

11.5 Closure

 

12. Psychrometry

12.1 The Moist Air Model

12.1.1 Model Assumptions

12.1.2 Saturation Processes

12.1.3 Absolute and Relative Humidity

12.1.4 Dry- and Wet-Bulb Temperatures

12.1.5 Moist Air (MA) Daemons

12.1.6 More properties of Moist Air

12.2 Mass And Energy Balance Equations

12.2.1 Open-Steady Device

12.2.2 Closed Process

12.3 Adiabatic Saturation and Wet-Bulb Temperature

12.4 Psychrometric Chart

12.5 Air-Conditioning Processes

12.5.1 Simple Heating or Cooling

12.5.2 Heating with Humidification

12.5.3 Cooling with Dehumidification

12.5.4 Evaporative Cooling

12.5.5 Adiabatic Mixing

12.5.6 Wet Cooling Tower

12.6 Closure

 

13. Combustion

13.1 Combustion Reaction

13.1.1 Combustion Daemons

13.1.2 Fuels

13.1.3 Air

13.1.4 Combustion Products

13.2 System Analysis

13.3 Open-Steady Device

13.3.1 Enthalpy of Formation

13.3.2 Energy Analysis

13.3.3 Entropy Analysis

13.3.4 Exergy Analysis

13.3.5 Isothermal Combustion—Fuel Cells

13.3.6 Adiabatic Combustion—Power Plants

13.4 Closed Process

13.5 Combustion Efficiencies

13.6 Closure

 

14. Equilibrium

14.1 Criteria for Equilibrium

14.2 Equilibrium of Gas Mixtures

14.3 Phase Equilibrium

14.3.1 Osmotic Pressure and Desalination

14.4 Chemical Equilibrium

14.4.1 Equilibrium Daemons

14.4.2 Equilibrium Composition

14.5 Closure

 

15. Gas Dynamics

15.1 One-Dimensional Flow

15.1.1 Static, Stagnation and Total Properties

15.1.2 The Gas Dynamics Daemon

15.2 Isentropic Flow of a Perfect Gas

15.3 Mach Number

15.4 Shape of an Isentropic Duct

15.5 Isentropic Table for Perfect Gases

15.6 Effect of Back Pressure: Converging Nozzle

15.7 Effect of Back Pressure: Converging-Diverging Nozzle

15.7.1 Normal Shock

15.7.2 Normal Shock in a Nozzle

15.8 Nozzle and Diffuser Coefficients

15.9 Closure

 

Appendices

Glossary

Index